Problema 942. Suppose $A B C$ is any triangle with angle bisectors $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ meeting at the incenter I. Let $A^{\prime \prime}=I A \cap B^{\prime} C^{\prime},{ }^{\prime \prime}=I B \cap A^{\prime} C^{\prime}$, and $C^{\prime \prime}=I C \cap A^{\prime} B^{\prime}$. Prove that

$$
\frac{I A^{\prime \prime}}{A^{\prime \prime} A}+\frac{I B^{\prime \prime}}{B^{\prime \prime} B}+\frac{I C^{\prime \prime}}{C^{\prime \prime} C}=1
$$

Proposed by Geoffrey Kandall, Hamden CT.
Solution by Ercole Suppa, Teramo, Italy

Let r, s, Δ be the inradius, the semiperimeter and the area of $\triangle A B C$ and let $a=B C, b=C A, c=A B$. By using the well known formulas

$$
\begin{gathered}
A B^{\prime}=\frac{b c}{a+c} \quad A C^{\prime}=\frac{b c}{a+b} \\
A I=\frac{r}{\sin \frac{A}{2}}=\frac{2 \Delta}{2 s \cdot \sin \frac{A}{2}}=\frac{b c \cdot \sin A}{(a+b+c) \cdot \sin \frac{A}{2}}=\frac{2 b c \cdot \cos \frac{A}{2}}{a+b+c}
\end{gathered}
$$

we have

$$
\begin{equation*}
A A^{\prime \prime}=\frac{2 \cdot A C^{\prime} \cdot A B^{\prime}}{A C^{\prime}+A B^{\prime}} \cdot \cos \frac{A}{2}=\frac{2 b c \cdot \cos \frac{A}{2}}{2 a+b+c} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
I A^{\prime \prime}=A I-A A^{\prime \prime}=\frac{2 b c \cdot \cos \frac{A}{2}}{a+b+c}-\frac{2 b c \cdot \cos \frac{A}{2}}{2 a+b+c}=\frac{2 a b c \cdot \cos \frac{A}{2}}{(a+b+c)(2 a+b+c)} \tag{2}
\end{equation*}
$$

From (1) and (2) it follows that

$$
\begin{equation*}
\frac{I A^{\prime \prime}}{A^{\prime \prime} A}=\frac{a}{a+b+c} \tag{3}
\end{equation*}
$$

By using (3) and its cyclic relations we get the desired result.

