
Problema 942. Suppose ABC is any triangle with angle bisectors AA′, BB′,
and CC ′ meeting at the incenter I. Let A′′ = IA ∩ B′C ′, ′′ = IB ∩ A′C ′, and
C ′′ = IC ∩A′B′. Prove that

IA′′

A′′A
+

IB′′

B′′B
+

IC ′′

C ′′C
= 1
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Let r, s, ∆ be the inradius, the semiperimeter and the area of 4ABC and
let a = BC, b = CA, c = AB. By using the well known formulas

AB′ =
bc
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bc

a + b
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r
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2∆
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2

=
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we have
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2 ·AC ′ ·AB′
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A

2
=
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2

2a + b + c
(1)

and
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2
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−
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From (1) and (2) it follows that

IA′′

A′′A
=

a

a + b + c
(3)

By using (3) and its cyclic relations we get the desired result. �
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